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The growth rates and phase speeds of gravity-capillary wind waves are investi- 
gated through numerical solution of a linear, viscous, coupled, shear-flow 
perturbation model. Numerical results are obtained by transforming the 
boundary-value problem of a perturbed mean laminar shear flow into a matrix- 
eigenvalue problem using standard finite-difference methods. 

Detailed calculations are performed for a basic state composed of a logarithmic- 
linear mean flow profile in the air and a linear-logarithmic mean flow profile in 
the water. We exclude turbulent Reynolds stresses. Calculated growth rates show 
excellent agreement with corresponding experimental growth rates. This implies 
that the initial growth of gravity-capillary wind waves is almost certainly due 
to the instability of the coupled laminar shear flow in the air and water. 

The investigation also demonstrates that the shear flow in the water cannot 
be ignored in wave growth studies, since the usual 3-4 yo, highly sheared, wind- 
induced surface drift produces a significant increase in the growth of wind- 
generated gravity-capillary waves. 

1. Introduction 
A major advance towards reliable ocean wave prediction has been made in 

recent years by Hasselmann et al. (1973). This work demonstrates the dominant 
role of wave-wave interactions in shaping the wave spectrum during its develop- 
ment. Nonetheless the identity of the mechanisms responsible for transfer of 
momentum and energy from wind to waves has not been k m l y  established. 
Phillips (1966, pp. 79-87) considers growth arising from resonant interaction of 
water waves with turbulent fluctuations in the air. Miles (1957, 1959) considers 
the effect of a laminar shear flow in the air alone on wave growth. A phase-shifted 
pressure at a critical layer where the wave and air speeds coincide enters the 
theory. Neither of these theories agrees with experiment. The results of Miles’s 
(1962 b) subsequent perturbation of the viscous boundary layer yielded more 
reasonable growth rates for gravity-capillary waves, but results of experimental 
comparisons (Stewart 1970; Gottifiedi & Jameson 1970; Wilson et al. 1973) were 
equivocal and limited to very low wind speeds and to waves so long that the 
approximations of Miles’s (19623) calculations were not clearly valid. 

Recently Larson & Wright (1975) measured initial growth rates using a micro- 
wave radar technique which permitted them to treat shorter waves and higher 
wind speeds. Comparison of Miles’s (19623) predictions with these latest measure- 
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FIGURE 1. Comparison of measured wind-wave growth rates and Miles’s (1962b) predic- 
tions. Miles’s theory: -, U; = SU$; - - -, U; = 5U$. Experiment (Larson &Wright) : 
0,  U$ = 7 cm/s; 0, U$ = 15 cm/s; A, U$ = 27 cm/s. 

ments (figure 1) strongly supports Miles’s (19623) basic procedure. Miles did not 
include the shear flow in the water in his calculations; it is known that the phase 
speed of wind waves in the gravity-capillary region depends on the wind-induced 
drift in the water (Wright & Keller 1971; Shemdin 1972). Thus, in realityit is the 
coupled shear flow, including the wind drift, which should be perturbed to obtain 
growth rates. Furthermore, Miles (19623) used Benjamin’s (1959) approximate 
boundary conditions and generally relied on the decomposition of the solution of 
the Orr-Sommerfeld equation into inviscid and viscous parts. This dichotomy 
is valid as long as the thickness of the viscous boundary layer, of order v/U,, is 
large compared with the critical-layer (friction-layer) thickness (v /k  U’),. It is 
seen in figure 2 that this condition is satisfied only at larger wavenumbers and 
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FIGURE 2. Boundary-layer thickness (solid curves) and critical-layer thickness (dashed 
curves) as a function of air friction velocity. V, is the kinematic viscosity of the air and Ug 
is the air friction velocity. 

for the smaller air friction velocities (i.e. small wind speeds). It is the purpose of 
this work to extend Miles’s results to higher wind speeds by numerical solution 
of the Orr-Sommerfeld eigenvalue problem as well as to determine the extent to 
which the flow in the water (the wind drift) affects the wave growth rates. 

The formal development of the linear, coupled, shear-flow perturbation model 
has been given by Keller, Larson & Wright (1974) but results were obtained only 
from an uncoupled version of the model from which the flow in the air was 
essentially excluded. This uncoupled model predicted realistic phase speeds, but 
incorrectly yielded a growing wave travelling against the wind and a decaying 
wave travelling with the wind. Previously, Shemdin (1972),using an inviscid form 
of the coupled shear-flow model, obtained phase speeds that were in qualitative 
agreement with experimental results, but did not include viscosity. 



232 G. R. Vubnzuelu 

In  5 2 the coupled shear-flow perturbation model with a harmonic disturbance 
on the surface is developed starting from the Navier-Stokes differential equation 
for incompressible fluid flow. Linearization of the differential equations and 
elimination of the pressure yields the Orr-Sommerfeld differential equation for 
the vertical dependence of the first-order stream function of the flow. The flows 
in the air and in the water are connected through the continuity of velocity and 
stress components at the free surface. In  $ 3 well-established finite-difference 
techniques are introduced for solving the Orr-Sommerfeld differential equation. 
These methods have been used by Thomas (1953), Kurtz & Crandall (1962), 
Osborne (1967), Jordinson (1970) and Hughes (1972), among others, to treat 
plane Poiseuille and Blasius laminar shear flows over a rigid boundary. Here 
Osborne’s (1967) iterative scheme is adopted to deal with our more complex 
boundary-value problem involving a logarithmic-linear mean flow profile in the 
air and a linear-logarithmic profile in the water. The numerical results are 
presented in $4. This iterative scheme, which uses a uniform grid spacing for the 
vertical variable x ,  Numerov transformation and Gaussian matrix inversion, 
works best for small wind speeds and large wavenumbers (i.e. towards 8.67 em-l). 
Convergence of the eigenvalues (i.e. complex phase speeds) is obtained in three 
to four iterations in most cases. For the higher wind speeds (i.e. greater than 
6 m/s) the critical layer, present in the air for the mode travelling with the 
wind, descends towards the air-water interface and convergence is not achieved 
as readily for the smaller wavenumbers. The coupled shear-flow model correctly 
yields a growing wave travelling with the wind and a decaying wave travelling 
against the wind. 

In  $ 5  the growth rates obtained with the coupled shear-flow model are com- 
pared with the Miles (19623) predictions and with experimental measurements. 
The comparison with Miles indicates that the uncoupled model may under- 
estimate the growth rates for the small wavenumbers (i.e. less than 1-55 em-l) 
and may somewhat overestimate the growth for the larger wavenumbers. The 
comparison of measured and theoretical growth rates shows reasonable agree- 
ment in magnitude and in dependence upon the air friction velocity. I n  fact at 
the largest wavenumber examined, 8.67 em-l, the agreement is quite remarkable. 
The inclusion of the wind drift yields growth rates at smaller wavenumbers which 
are significantly greater than those predicted when the flow in the water is 
neglected. 

We believe that this agreement implies that the growth of gravity-capillary 
waves is indeed due to linear instability of the coupled shear flow a t  the air-water 
interface. Larson & Wright (1975) have noted that the magnitude of the measured 
growth rates is such that the entire wind stress can be supported by the short 
waves. Thus i t  is not necessary to assume the existence of turbulent, wave- 
induced Reynolds stresses, air-flow separation or other nonlinear features of the 
air flow in order to explain the transfer of momentum from wind to waves. 
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2. Formulation of the model 
Consider an established mean laminar shear flow U ( z )  in the air and in the water. 

A harmonic disturbance (gravity-capillary wave) travels with or against the 
wind a t  the phase speed Re(c) on the air-water interface (figure 3). We seek the 
growth or damping rate and phase speed of this surface wave. The flow in the air 
and in the water can be described by the Navier-Stokes equation for an 
incompressible fluid flow W: 

awla t  +(w. v) w +p-ivg- V V ~ W  = 0, (2.1) 

where p is the density of the fluid, v is the kinematic viscosity of the fluid, B is 
the total pressure and t is time. We take x as the horizontal co-ordinate and z as 
the vertical co-ordinate. At z = +co the vertical component of velocity must 
vanish, and a t  the air-water interface the normal and tangential velocity and 
stress components must be continuous. In  our approximation the total flow W 
is composed of an established laminar shear flow ( U ( z ) ,  0) (i.e. the flow which 
would be present in the absence of the harmonic disturbance) and a first-order 
flow (u(x, z ;  t ) ,  w ( x ,  z ;  t ) )  described by the linearized form of (2.1) when the surface 
wave is present (the expansion parameter is the slope of the surface wave). 
Similarly the total pressure 9’ is composed of the static pressure P(z) and a 
first-order pressure p(x,  z ;  t )  due to the harmonic disturbance, where 

p(x,  z ;  t )  = p ( z )  exp [ik(x- ct)] .  (2 .2 )  

For convenience the first-order flow is to be derived from a stream function 
$(x, z ;  t )  = $(z)  exp [ik(x - ct)] ,  where k is the wavenumber of the surface wave 
and c is the complex eigenvalue of our boundary-value problem. The real part 
of c is the phase speed and the imaginary part of c is related to the growth or 
damping of the surface wave. Eliminating the first-order pressure from the 
linearized Navier-Stokes equation yields the well-known Orr-Sommerfeld 
differential equation. Thus, in the air $(z)  must satisfy 

iva($i5~v-2k2gl;+k4q5,) +k[ (U- -c ) ( (6 ; -k2$ , ) -  u3,] = 0 (2.3) 

whereas in the water $(z)  satisfies 

iv ,  (& - 2k2 $; + k4 q5w) + k[ ( U - C) (4; - k2 #w) - U L  dw] = 0, (2 .4 )  

where the subscripts a and w refer to the air and water respectively, and the 
primes signify derivatives with respect to the variable z.  

The first-order wave pressure in each medium can be obtained from the 
horizontal component of the linearized Navier-Stokes equation. Thus, in the air 

pelpu ( z )  = - (U  - c) $; + u; q5u - ik-lvu (#Z - k2&) - gc 

p;lp, (2) = - (U  - c )  q5L + u;, q5w - ik-lvw ($5; - k”L) - g5,  

(2.5) 

(2 .6)  

and in the water 

where the wave pressures are departures from hydrostatic, g is the acceleration 
due to gravity and the first-order surface displacement is 

C(x; t )  = 6 exp [ ik(x  - ct)] .  



234 G. R. Valenzuela 

FIUURE 3. Illustration of coupled shear flows in the air and in the water. On the surfaoe a 
harmonic disturbance (wave) travels with the wind or against the wind. (a) Loglin-zero 
profile. (b)  Loglin-linlog profile. 

At the free surface the discontinuity in normal prersure must be balanced by 
surface tension and the tangential stress must be continuous. The boundary 
conditions are applied at the free surface but are referred to z = 0 by using a 
Taylor expansion (Phillips 1966, p. 24). At first order this is equivalent to 
Benjamin’s (1959) use of curvilinear co-ordinates for the flow. Accordingly, the 
first-order continuity condition for the normal pressure is 

where pw and pa are the (molecular) viscosity coefficients of water and air 
respectively, and T’ is the surface tension of the interface. 
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To first order, continuity of tangential stress at the free surface yields 

at x = 0. (2.8) 

The continuity of the first-order velocity components a t  the free surface requires 
that 

w, = w, (2.9) 

(2.10) 

Hence, combining (2.5)-(2.7), using the stream function to describe the velocities 
and introducing the kinematic boundary condition ( = - $/(% - c )  (i.e. 
U ,  = U ( 0 ) )  we obtain the boundary condition for the normal pressure at z = 0: 

p , [ ( U , - ~ ) ~ k $ ; - k ( U , - c )  U ; $ , + ~ V , ( U , - C ) ( $ ~ -  3k2@;)-gk$,] 

= p , [ ( V , - ~ ) ~ k $ h - k ( V , - ~ )  U h $ , + i v , ( U , - c ) ( $ ~ - 3 k 2 @ ~ ) -  (gk+Tk3)$,] ,  
(2.11) 

where T = T'/pw. 
Similarly, the other boundary conditions (2.8)-(2.10) may be reduced to 

P a [ ( V ,  -c) (FII + k2 $a) - Vi$aI = ~w [(V, -c)  (G + k2 $w)  - U;$W], (2.12) 

$a = $to (2.13) 

(2.14) and 

respectively, a t  x = 0. 

(U, -c) $; - uk @a = (V,- C) $h - UL $to, 

The boundary conditions a t  z = 1- CO for the first-order flow are 

$ exp ( -t kz) -+ constant. (2.15) 

Therefore the boundary-value problem to be solved for the eigenvalue reduces 
to the pair of Orr-Sommerfeld equations (2.3) and (2.4) for the flow in the air 
and in the water together with the boundary conditions (2.11)-(2.14) at x = 0 
and the boundary conditions (2.15) at x = _+ 00. Exact analytic solution of this 
problem is out of the question. Therefore, in the following section we shall use 
finite-difference methods to solve this problem numerically. 

3. Finite-difference methods 
Finite-difference methods for solving the Orr-Sommerfeld differential equa- 

tion have been developed for plane Poiseuille flow by Thomas (1953) and Hughes 
(1972) and for Blasius laminar flow over a flat surface by Kurtz & Crandall(1962), 
Osborne (1967) and Jordinson (1970), among others. I n  our case we deal with an 
established mean flow profile in two different media: a logarithmic-linear profile 
in the air and a linear-logarithmic profile in the water. The boundary conditions 
at the free surface connecting the shear flows are considerably more complex 
than those used in the previous investigations. 
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The Orr-Sommerfeld equations and the boundary conditions for the flows are 
approximated by finite-difference expressions and the resulting eigenvalue 
problem can be solved by standard matrix-inversion techniques. To approximate 
the Orr-Sommerfeld differential equation as accurately as possible, we draw 
upon previous work and introduce the Numerov transformation (Osborne 1967). 
Accordingly, we let 

+ = ( 1 + + ~ - ~ & 6 4 ) 0 ,  (3.1) 

where 6, and a4 are standard central-difference notation. If D denotes d/dz and 
h is the increment in z, then 8, = (hD)2 and 64 = (hD)4. The Orr-Sommerfeld 
equation in finite-difference form for the more accurate variable O is 

{iv[,34 - 2 k 2 h y ~  + ~ 8 4 )  + k4h4(1+ 3 ~ ) 1 +  m( u - C) [P + h z s 4  

- h2k2( 1 + ill2)] - kh4U"( 1 + +a2 - &S4))6 = 0. (3.2) 

The term in a4 in the coefficient of U" has been dropped in the numerical calcu- 
lations since i t  is of higher order than our truncation error. 

The finite-difference equation (3.2) is then explicitly written out for each level 
z = nh in the air and each level z = -nh in the water, for n = 0,1,2,  ..., N .  
Following Osborne (1967) and Jordinson (1970) the finite-merenee expressions 
P, d4,,u8 = hD and pa3 = also needed in the boundary conditions are 
developed to fourth order in A. The Orr-Sommerfeld equation in finite-difference 
form at each level z requires the value of the eigenfunction O at five consecutive 
levels. In  symbolic notation, (3.2) is of the form 

A, o,,, +B, e,+, +cp 8, +B, o ~ - ~  +A, o,-, = 0, (3.3) 

where 0, = O(x = ph) ,  O,,, = O(z = @ +l)h) ,  O,-, = O(z = ( p -  1)h) and so forth. 
Thus, when the finite-difference approximation to the On-Sommerfeld equation 
is written down for z = k 2h, k h and 0, the fictitious values Of,, O?,, OY, and 
Oy2 appear. I n  our case @is also an extra quantity since we use 0; at z = 0 in 
the system of equations. To eliminate the four fictitious values of O and the 
unwanted value O,W use is made of the four boundary conditions (2.11)-(2.14) in 
finite-difference form, together with the finite-difference form of the Orr- 
Sommerfeld equation a t  z = 0 on the water side. We also let UL(0) = U&(O) = 0 
in (2.12) since it is assumed that boundary layers are always present a t  the air- 
water interface. At z = * N h  = st z,,, and at z = ? ( N -  1)h we have used the 
boundary conditions (2.15), which in finite-difference form are 

O * ( N + 9  = exp ( T 2kh) O*N,  O*(N+l) = exp ( T kh) O*N. (3.4) 

After algebraic manipulation the unwanted values of the eigenfunction can be 
obtained in terms of the desired values @, OT, 02, OY1 and OY,. The resultant 
matrix-eigenvalue problem to be solved for c is of the form 

d ( c ) v  = 0, (3.5) 

where d ( c )  is a multidiagonal matrix which contains a principal diagonal band 
of nine non-zero elements. The matrix turns out to be asymmetric about the 
main diagonal because of the manner in which the boundary conditions are 
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included in the finite-difference expression for the Orr-Sommerfeld equation. 
Note that in the case of the uncoupled shear flow over a rigid boundary (Osborne 
1967) &(c) is a pentadiagonal matrix. 

4. Numerical results 
To solve the resultant matrix-eigenvalue problem for the complex eigenvalue 

c we use Osborne’s (1967) iteration scheme. In  this method the following iteration 
is implemented: 

C i + l  = ci- (vi+l)p/(ui+l)p, 

where ui+l and vi+l are vectors which should not be confused with the first-order 
velocity components of the previous sections. The suffix i denotes the stage of 
the iteration and p is the index of the component of maximum modulus in ui 
or u ~ + ~ .  I n  this iteration Newton’s method is used to obtain the eigenvalues of 
the matrix M(ci) and the maximum component of a vector is obtained in the 
direction of the eigenvector. Osborne (1967)ihas shown that when M i s  linear in c 
the iteration is of third order in the mesh spacing. 

Although the Orr-Sommerfeld differential equation is linear in c, the boundary 
conditions at z = 0 introduce elements into &(c) which are nonlinear in c, 
containing factors of the form 

a, + a1 (V, - c) + a2 (U,  - c)2 + a3 (U, - c)3+ a,(q - c)4 

b, + b, (U,- c )  + b, (u, - c)2+ b, (u,- c)3+ b4 (u, - c)4 * 

For the mean shear flow we have used a logarithmic-linear profile in the air 
and a linear-logarithmic profile in the water which are coupled a t  the air-water 
interface by matching of the mean tangential stress (Shemdin 1972). Accordingly 
we have set 

in the specification of the mean shear profiles in both media. Ug is the friction 
velocity in the water and U$ is the air friction velocity, which is approximately 
equal to 5% of the wind speed. 

To start the iteration (4.1) we let the real and imaginary parts of U ~ / ( U ~ ) ~  be 
unity and zero respectively at each level of z. For the initial eigenvalue we assume 
complete advection of the water wave by the surface drift. That is, 

where c, is the classical phase speed of infinitesimal gravity-capillary waves and 
V, is 3-4% of the wind speed (Wright & Keller 1971; Shemdin 1972; Keller et 
al. 1974; Wu 1975). In  comparing our results with the Miles (19623) predictions 
we let the flow inside the water vanish and, of course, for this case U, = 0 also. 
The upper signs in (4.4) apply for a wave travelling with the wind and the lower 
signs apply for a wave travelling against the wind. For the lower wind speeds 
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the choice of the initial estimate of the eigenvalue was not really all that impor- 
tant to convergence. For wind speeds greater than 6 m/s and wavenumbers less 
than 1.55 cm-l an improved initial estimate of the eigenvalue hastens conver- 
gence. 

Calculations with the coupled shear-flow perturbation model have been 
performed with a CDC 3800 computer in single-precision complex arithmetic 
(precision approximately ten decimal digits). Numerical results were obtained 
for wavenumbers between 0.628 and 8.67 cm-1 for wind speeds up to 15 m/s. 
The greatest accuracy in the numerical results was achieved for the larger 
wavenumbers and the small to intermediate wind speeds. The number of mesh 
points ranged from about 101 to 1001. Typical computation times ranged from 
about 1.25 s per iteration for 101 mesh points and increased linearly with the 
number of mesh points. I n  most of the computations half of the mesh points 
were placed in each medium. 

Convergence was obtained in about three to four iterations for wind speeds 
less than 6 m/s. For the higher wind speeds more iterations were required and a 
maximum of ten was arbitrarily set. In  some cases convergence did not result 
after ten iterations. Typically, these failures occurred for waves travelling down- 
wind, for which the critical layer approaches the water surface (i.e. Re (c) + q). 
We believe that some of these convergence problems arise from the sensitivity 
of the factors (4.2) to V,-c .  Specifically, the real part of V,-c vanishes as the 
critical layer meets the interface and the imaginary part of V,  - c is quite small. 
Our mesh size ranged from 0.04 to 0.0004 cm, and this is apparently inadequate in 
some cases, in particular for the larger wind speeds and the smaller wavenumbers. 

The computational dilemma is as follows. One should have a z,,, 3 A% at 
least as large as about a half-wavelength to obtain a sufficiently accurate phase 
speed. One should also have a mesh size fine enough so that an adequate number 
of samples exist within the critical layer of thickness (v/kU’)* in order to obtain 
an accurate growth rate for the surface wave. Hence the accuracy of the results 
deteriorates for the smaller wavenumbers, since z,,, must increase linearly with 
k-1 to obtain the correct Re(c) while to maintain the same number of points 
within the critical layer the mesh can only increase as k-*. Therefore a compro- 
mise must be made to accommodate both of these requirements. When the 
critical layer approaches the water there is no compromise possible. For these 
cases what is needed is a variable-grid approach. We attempted to develop a 
scheme using a variable grid spacing such as that of Hughes (1972), but were 
unsuccessful owing to the much greater complexity of our problem. 

I n  numerical experiments performed to increase our accuracy, Osborne’s 
iteration scheme was used in combination with a mesh reducing procedure. In  
this procedure, first an appropriate z,,, is used to obtain an accurate Re (c). 
Then, a t  the next stage the mesh size is cut in half, keeping the total number of 
mesh points constant. The boundary conditions at z = +&,, are then 
obtained from the eigenfunctions just derived with the coarse mesh. The 
previously found eigenfunctions and eigenvalue were then used to initiate the 
iteration with the finer mesh (the values of the eigenfunction needed for the 
intermediate points of the coarse mesh are obtained by linear interpolation). 
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The procedure is then repeated as many times as desired, thus achieving much 
smaller mesh sizes. Unfortunately, in this procedure i t  is not possible to arrive 
at an unambiguous criterion for deciding on the correct eigenvalue. 

I n  the standard Osborne iteration scheme we found that, as the number of 
mesh points was increased from 101 to 1001, arithmetic round-off errors became 
evident. This was alleviated somewhat by using the following method involving 
residuals to improve on the eigenvectors. After the vectors are obtained by 
Gaussian elimination using full-pivoting they are substituted into the original 
system of equations and residuals are calculated. Prom the residuals, corrections 
to  the vectors are obtained at each step. This procedure improved the eigen- 
vectors in the fifth significant figure, but the time per iteration increased by a 
factor of three from the standard iteration procedure. 

Numerical calculations have performed for various types of logarithmic-linear 
profiles which are typical of turbulent flows. However, specific results will be 
given here only for Miles’s (1962a) profile modified to include drift in the water. 
In  the air the flow profile is 

and in the water the flow profile (in which z is taken positive into the water) is 

where 
sinh a, = ( z  - zf)/ l*25z& sinh a, = ( x  - zj1)/1-25z,W, 

x$ = v,/U$, z r  = v,/Uz, p , ( U s ) z  = p,(Ug)2,  Ug = 0.05 x wind, 

v, = 0.15cm2/s, vw = 0.01 cm2/s. 

In  comparing with Miles’s (1962 b )  wave growth predictions we have set Us = 0 
and U ( z )  = U’(z) = U”(z) = 0 in the water. 

The phase speeds obtained with the coupled shear-flow model for Miles’s 
loglin-zero profile (no flow in the water) are shown in figure 4. As expected the 
phase speed decreases in magnitude with increasing air friction velocity as the 
negative pressure produced by the mean flow in the air (i.e. inertial effect) tends 
to slow the wave down. It is well known that, when the phase speed of the surface 
wave becomes zero (i.e. the critical layer approaches the air-water interface), a 
Kelvin-Helmholtz instability occurs. In  this figure the phase speeds for a wave 
travelling against the wind are also given. Upwind-travelling waves have been 
observed in wave tanks (J. W. Wright, private communication). 

When the shear flow in the water is included the waves are also advected. 
The resultant phase speeds (figure 5) now are a balance of two counteracting 
effects: advection of the wave by the flow in the water and the inertial effect from 
the flow in the air. It is evident that advection predominates initially, but as the 
wind speed increases, the inertial effect from the flow in the air becomes signifi- 
cant. The reduction in phase-speed magnitude with increasing wind speed for 
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FIGUFLE 4. Theoretical phase speeds obtained with the coupled shear-flow model for the 
case of no flow in the water with a Miles (1962a) logarithmic-linear mean flow profile in 
the air. U$ = 5U$, 2; = valUg, U ,  = 0 and U$ = 0.05 x wind. (a)  Wave travelling with 
the wind. (b) Wave travelling against the wind. 

the small wavenumbers is also due in part to the decrease in the boundary-layer 
thickness in the water. In  some cases the critical layer (for a wave travelling with 
the wind) descends towards the air-water interface and becomes submerged in 
the water. This descent of the critical layer may be crucial in producing larger 
growth rates than those predicted by Miles's (19623) uncoupled model, in con- 
formity with speculations of Keller et ab. (1974). Phase speeds have also been 
obtained for other types of loglin-linlog profiles, but since the results are not very 
different from those in figures 4 and 5, they will not be given here. 

Typical growth and damping rates obtained with the coupled shear-flow 
perturbation model are shown in figures 6 (a)-(c). These growth rates have been 
obtained by multiplying the imaginary part of c by 2k. It is evident in these 
figures that convergence was not possible for the smaller wavenumbers and the 
larger wind speeds. It is nonetheless clear that the presence of the surface drift 
(shear flow in the water) produces larger growth rates. Also note that the growth 
rates of the waves travelling with the wind are larger than the damping rates of 
the waves travelling against the wind. 
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FIGURE 5. Theoretical phase speeds obtained with the coupled shear-flow model for the 
case U, = 0.04 x wind with a Miles ( 1 9 6 2 ~ )  logarithmic-linear profile in the air and in the 
water. U, = 5U*, z,, = v/U*, U$ = 0-05 x wind and U$ = Uz(pa/pw)*. (a) Wave 
travelling with the wind. (b)  Wave travelling against the wind. 

Our calculated growth rates are compared with those given by Miles (1  962 b )  
for U: = 5Ug in figure 7. We have set U, = 0 in (4.5) and 

U(2) = U’(2) = U ( 2 )  = 0 

in the water in accordance with the assumptions of the uncoupled model, but 
have retained the coupling between air and water by using the exact boundary 
conditions for the tangential velocity and stress rather than Benjamin’s (1959) 
approximation. This may account for the minor differences in calculated results 
for the shorter waves. In general our results are larger than those of Miles for the 
longerwaves and this is presumably due to theapproximationsinherent in Miles’s 
uncoupled calculation. Note also that our numerical results do not indicate the 
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FIGURE 6 .  Theoretical wind-wave growth (damping) rates obtained with 
flow model. U,  = 5U*, - , Us = 0; - - -, U s  = 0.04 xwind. (a) 
k: = 3.4 cm-I. (c)  k = 8.67 cm-l. 

the coupled shear- 
k = 0.9 cm-l. (b) 

resonant phenomenon for Ug = 6 cm/s shown by Miles’s predictions. Failure to 
observe such a phenomenon was a source of the scepticism of Wilson et al. (1973) 
about the applicability of Miles’s (1 962 b )  calculation to growth of wind-generated 
waves. 

5. Comparison with measured growth rates 
Recently Larson & Wright (1975) reported measurements of the initial 

temporal growth of waves in which exponential growth over several orders of 
magnitude in mean-square wave amplitude was observed after a wind was 
suddenly applied to a calm water surface. Comparison of such measurements 
with the results of a linear instability calculation, such as that reported here, is 
particularly apt. Although it can be demonstrated that the laminar sublayers will 
surely develop faster than the waves, we must note that the transient nature of 
the measurement does lead to some uncertainties on the magnitude of other 
pertinent parameters of the mean flow. First, the growth time of the wind drift 
is unknown but is probably long compared with the growth time of the shortest 
waves, which are less sensitive to this parameter in any case (i.e. short waves are 
mostly advected). The point is not as clear in the case of the longer waves, for 
these longer waves grow more slowly and the relevant part of the boundary layer 
may not develop as fast as the waves. Larson &Wright (1975), however, do report 

16-2 
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FIGURE 7. Comparison of wind-wave growth rates. - - -, from the coupled shear-flow 
model with U, = 0; - , Miles’s (19623) predictions. Uf = 5U0,. 

that a single unambiguous exponential growth rate was observed in all cases. 
Thus there was no evidence of wave growth variations caused by an unsteady 
wind drift. 

I n  any case, in the comparisons shown in figures 8-13, the calculated growth 
rates are shown both for the case of no drift and for a fully developed surface 
drift of 4 % of the wind. There is also an uncertainty about the appropriate value 
of the air friction velocity to be used in the comparison. Air friction velocities 
determined from logarithmic profiles in wind-wave tanks are generally closely 
proportional to, and about 5 yo of, the wind up to air friction velocities of about 
50 cmls. At higher winds the air friction velocity increases more rapidly. Air 
friction velocities may also depend on fetch in wind-wave tanks (Mitsuyasu & 
Honda 1975). Although Larson & Wright (1975) reported no such fetch depen- 
dence for fetches greater than a metre, subsequent measurements showed a 
significant decrease in U; at fetches shorter than a metre and winds greater than 
10 m/s (J. W. Wright, private communication). It would not be surprising if 
both the nonlinear wind-speed dependence and fetch dependence of U;  were 
due to waves, which are, of course, absent during the initial growth measurements 
of Larson & Wright (1975; also see Phillips 1966, p. 141). Thus a value of U$ 
equal to 5 % of the wind speed may be more appropriate to the transient condition 
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FIGURE 8. Measured and theoretical wind-wave growth rates for k = 0.9 cm-'. Theory (for 
U'$ = 0.05 x wind) : - , Miles's (1962b) model; ---, this work, U, = 0; ---, this 
work, Us = 0-04 xwind. Experiment: 0, Larson & Wright, 3 m fetch; x , Larson & 
Wright, measured points plotted for U$ = 0.05 x wind; m, Gottifredi & Jameson (4.61 
Hz); +, Hidy & Plate (4 Hz); 0, Wilson et al. (5 Hz). 

than the value measured in the steady state. I n  any case the measured values 
of the wind-wave growth rate have been plotted in figures 8-13 at values of U$ 
equal to 5 yo of the wind as well as at the steady-state value. Steady-state wave 
growth rates reported by Hidy & Plate (1966), Gottifredi & Jameson (1970) and 
Wilson et al. (1973) have also been plotted in figures 8 and 9. 

Finally Miles's (1962 b )  predictions for U;t = 5 U; and U: = 8 U$ are also shown 
in figures 8-13. The value Uf = 5Ug and the concomitant boundary-layer 
thickness, 5z;, generally give better overall agreement with the measurements 
and these are the values used in our calculations, as noted previously. It is also 
worth noting that this value of the boundary-layer thickness yields calculated 
phase speeds in excellent agreement (figure 14) with those determined from 
microwave Doppler spectra by Keller et al. (1974) for k = 3.4 em-l. Although 
the phase speeds are not critically dependent on the boundary-layer thickness, 
is is nonetheless satisfying that the value of this parameter which gives the best 
agreement for the imaginary part of the eigenvalue also works well for the real 
part. 
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FIGURE 9. Measured and theoretical wind-wave growth rates for Ic = 1.55 om-l. Theory 
(for UQ = 0.05 x wind) : -, Miles’s (1962 b)  model; - - -, this work, U, = 0; -.-, this 
work, Us = 0.04 x wind. Experiment: 0, Larson & Wright, 3 m fetch; A, Larson & 
Wright, 8.4 m fetch; x , Larson & Wright, measured points plotted for Ug = 0.05 x wind; 

, Gottifredi & Janieson (6-2 Hz) . 
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FIGURE 10. Measured and theoretical wind-wave growth rates for k = 2.31 om-l. Theory 
(for Ug = 005xwind): -, Miles’s (19626) model;---, this work, U ,  = 0; -.-, this 
work, U ,  = 0.04 xwind. Experiment (Larson & Wright): 0, 3 m fetch; X ,  memured 
points plotted for U$ = 0.05 x wind. 
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FIGURE 11. Measured and theoretical wind-wave growth rates for k = 3.4 om-'. Theory 
(for U$ = 0.05 x wind) : - Miles's (1962b) model; - - -, this work, U ,  = 0; ---, this 
work, Us = 0.04 x wind. Experiment (Larson & Wright) : 0, 1 m fetch; 0, 3 m fetch; 
x , measured points plotted for Ug = 0.05 x wind. 

u., (cmld 

FIUURE 12. Measured and theoretical wind-wave growth rates for k = 5.01 cm-1. Theory 
(for Ug = 0.05 x wind) : - , Miles's (1962b) model; - - -, this work, U ,  = 0; -.-, this 
work, U ,  = 0.04 x wind. Experiment (Lamon & Wright) : 0, 1 m fetch; 0, 3 m fetch; 
x , measured points plotted for Ug = 0.06 x wind. 
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FIU~RE 14. Comparison of phase speeds obtained with a coupled shear-flow model (curve, 
for Ul = 5U*, Ug, = 0.05 x wind and U ,  = 0-04 x wind) with measurements of Keller 
et al. (points) for k = 3-4 om-'. 

FIGUFLE 13. Measured and theoretical wind-wave growth rates for k = 8.67 om-l. Theory 
(for U$ = 0.05 x wind) : - , Miles’s (1962b) model; - - -, this work, U, = 0 ;  -.- , this 
work, U, = 0.04xwind. Experiment (Larson & Wright): 0, 1 m fetch; 0, 3 m fetch; 
x , measured points plotted for Ug = 0.05 x wind. 
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6.  Conclusions 
We have developed a complete viscous, linear, coupled, shear-flow perturba- 

tion model for the growth rates and phase speeds of gravity-capillary wind 
waves. Using finite-difference methods the boundary-value problem has been 
converted into a matrix-eigenvalue problem, which has been solved using 
Osborne’s (1967) iteration scheme. The complete viscous, coupled, shear-flow 
model predicts waves which grow when travelling with the wind and decay when 
travelling against the wind. 

The growth rates calculated from the model, which does not include turbulent 
stresses, are in reasonable agreement with the measured growth rates of gravity- 
capillary wind waves of Larson & Wright (1975). This implies that the growth 
of gravity-capillary waves is indeed due to the instability of shear flows in the 
air and in the water, 

Comparisons of the predictions of the coupled shear-flow model for vanishing 
flow in the water with those by Miles’s (1962b) model show that Miles under- 
predicts the growth rates of wavenumbers less than 1.55 cm-1 and overpredicts 
slightly those for the large wavenumbers for Uf = 5Ug. 

When the shear flow in the water is included a significant increase in the growth 
rates is obtained, in particular for wind speeds in excess of 6 m/s. 

With pleasure we thank J. W. Wright for sharing physical insight, discussing 
the measurements and for other valuable comments and suggestions during this 
research. We are also indebted to J. W. Witting for providing council and 
understanding on boundary layers. 
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